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EXTENDING KOTZIG'S THEOREM 

BY 

JOSEPH ZAKS 

ABSTRACT 

The weight of a graph G is the minimum sum of the two degrees of the end 
points of edges of O. Kotzig proved that every graph triangulating the sphere 
has weight at most 13, and Grfinbaum and Shephard proved that every graph 
triangulating the torus has weight at most 15. We extend these results for 
graphs, multigraphs and pseudographs "tr iangulat ing" the sphere with g 
handles S~, g ~ l, showing that the corresponding weights are at most about 
\ 48g, 8g + 7 and 24g - 9, respectively; if a (multi, pseudo) graph triangulates S~ 
and it is big enough, then its weight is at most 15. 

A. Kotzig's Theorem ([6], see also [7]), popularized in the West by B. 

Grfinbaum ([2] and [3]), states that every graph which triangulates the sphere 

contains an edge in which the sum of the degrees of its end vertices is at most 13; 

13 is best lower bound, as can be seen in the Kleetope (see [1] for definition) over 
the icosahedron, see [6], [2] and [3]. This theorem has been strengthened by E. 

Jucovi~ [5] and extended by A. Kotzig [7]. 

Recently, B. Grfinbaum and G. Shephard [4] proved that every graph trian- 
gulating the torus contains an edge in which the sum of the degrees of its end 

vertices is at most 15, and 15 is best possible lower bound (for a related remark, 

see [2]). They also gave examples of multigraphs (having multiple edges but no 
loops) dissecting the closed 2-manifold Sg of genus g into triangles, g => 1, such 

that the minimum of all the sums of degrees of end vertices of edges is 13 + 2g; 

they conjectured that every multigraph dissecting Sg into triangles has an edge in 
which the sum of the degrees of its end vertices is at most t3 + 2g, for all g => 1. 

Let G~ denote the family of all the graphs, containing no loops or multiple 

edges, which triangulate S~ ; each member of G~ induces a decomposition of Sg 

into a cell-complex, where the closure of each 2-cell is homeomorphic to a closed 

disc, and every 2-cell meets along edges (1-cells) precisely three other 2-cells, 

g=>l.  
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Let MGg denote the family of multigraphs, containing possibly multiple edges 

but containing no loops, which triangulate Sg in the sense of [4], i.e., each 

member of MGg induces a dissection of Sg into cells, such that the closure of 

each 2-cell is homeomorphic to a closed disc and each 2-cell meets along edges 

precisely three other 2-cells; as multiple edges are allowed, two 2-cells need not 

meet in a connected set, but the meet is always a collection of edges and vertices; 

in fact, an edge might meet a 2-cell in just its two vertices, and two 2-cells can 

meet in only their three common vertices, as will be constructed later in the 

paper (compare [4]). 

Let PGg denote the family of all the pseudographs, containing possibly 

multiple edges or loops, which dissect Sg into regions such that each region has 

an interior homeomorphic to an open disc, and every region meets three regions 

(among which it might meet itself too) along three edges; these edges might be 

loops. 

Let the weight w(E) of an edge E in a multigraph G be defined as the sum of 

the degrees of its end vertices; and if G is a pseudograph and E is a loop, then 

w(E) is defined as twice the degree of its unique end vertex. Let w(G) be 

defined as min{w(E) lE  E G}, and if ~ is a family of pseudographs, then w(~)  

is defined by w ( ~ ) =  max{W(G)l G E ~}. 

In these notations, Kotzig's Theorem states that w(Go)= 13, and 

Grfinbaum-Shephard's Theorem is that w (MG1) = 15 and their conjecture reads 

"w(MGg) = 13+2g for all g,g >2". 
For each integer g define n(g) as the least odd integer which is greater than 

6 + X/48g + 1. 

The purpose of this paper is to show that w(Gg)<= n(g), that w(MGg)= 
8g + 7 and that w (PGg) = 24g - 9, for all g => 1. 

Starting with graphs which triangulate Sg, g _-> 1, we have the following 

THEOREM 1. For every g,g >--_ l, w(Gg)<=n(g). 

THEOREM 2. If g >- 2 and .48g + 1 is a complete square, then there is a unique 
graph G in Gg such that w ( G ) = n(g); G is the Kleetope over the triangulation of 
Sg by the complete graph K~n 1)/2 on (n -1) /2 vertices. 

THEOREM 3. If g >--_ 2 and a graph G in Gg is such that w(G) = n(g), then the 
maximum degree of G is at most n + 1. 

PROOF OF THEOREM 1. Let n denote an odd integer, n -> 11, and let g be any 

integer, g _->0. Let G be a graph in Gg and suppose w(G)>= n. Let e,,s denote the 

number of edges in G having end vertices which are i-valent and/-valent ;  thus 
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e,.j = 0 holds for all i and j satisfying i + j < n. We will show that for a proper  

choice of n, w(G)= n. 
Let vk denote the number of k-valent vertices of G;  it is well known (see [1]) 

that Euler's formula implies 

(1) 3v3+2v4+ v5 = 1 2 ( 1 - g ) +  ~ (k -6)vk.  
k ~ 7  

If any k-valent vertex V of G would have more than [k/2] neighboring 

vertices having valences < n/2, then some two consecutive ( =  neighbors) 

vertices W~ and W2 will have valences < n/2, so w(WIW2)< n, contradicting 

the assumption on G ;  therefore the following holds: 

(2) at most [k/2] neighbors of every k-valent vertex have valences -< (n - 1)/2. 

Every k-valent vertex in a triangulation has k different neighbors, therefore 

at least k - [k/2] neighbors of every k-valent vertex 
(3) 

are of valences _-> (n + 1)/2. 

It follows from (2) that at most [k/2] neighbors of every k-valent vertex are of 

valence 3, therefore 

(4) 

and by summing we get 

(5) 

e3,k~[ k] Vk for all k, 

k ~ n - 2  k ~ n - 2  

As Ek>3 e3,k counts all the edges having a 3-valent end vertex, and since e3,k 

-- 0 holds for all k, k _-< n - 4, it follows that 

(6) 3t~3-e3,--3= Z e3,k~ Z [k]  /)k- 
k > _ n - 2  k>>--n 2 L.~ J 

Considering all the 3-valent and 4-valent vertices which are neighbors to a 

k-valent vertex, it follows by (2) that 

(7) e3,k+e4,k~[ k] Vk for all k, 

hence 
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Consider ing all the 3-valent, 4-valent and 5-valent vertices which are neigh- 

bors to a k-valent  vertex,  it follows by (2) that 

(9) 

hence 

(10) 

es.k + e4.k + es,k < [ k ]  vk for all k, 

3/)s+4/)4+5/)5-es,. 5 = k-->n-4~ (e3,~ +e4,k + e s , k ) ~  k~,-4 ~ [k ]  vk" 

By multiplying the inequalities (6), (8) and (10) by 5, 3 and 2, respectively,  and 

adding them we get 

30/)3  + 20 / )4  + 10/)5 - 2e5,,-5 - 3 e 4 , . - 4  - 5 e 3 , . - 3  

(11) 

Let  e* be defined by e * =  2e5..-5 + 3e4.,-4 + 5es.,-3; (1) multiplied by 10 and 

(11) yield 

e* ~ 120(1 - g) + 10 ~ (k - 6)/)k + lO(n - 1 0 ) -  2 v.-4 
k = 7  

(12) 
+ ( l O ( n - 9 ) - 5  [-~-~--3]) /),-3+ lOk~_2 ( k - 6 - [ k ] )  /)k, 

n 5 

e* => 120(1 - g) + 10 ~ (k - 6)v~ + (9n - 95)/),_4 + (7�89 - 82�89 
k = 7  

(13) 
+ (5n - 65)v,-2 + (5n - 65)v,_~ + (5n - 55)v, + (5n - 55)v,+, + - . . .  

If g = 0 and n = 13, then the coefficients of v~ in the right side of (13) are all 

nonnegat ive ;  therefore  e* -> 120, hence w(Go) < 13. 

If g = 1 and n = 15, then coefficients of /)k in the right side of (13) are all 

positive, while 120(1 - g) = 0; therefore  e* => 1, hence w(G1) < 15. 

Examples  show that  indeed w (Go)=  13 and w (G~)=  15, see [6], [2], [3] and 

[4]. 

Suppose that g => 2. Let  V be a ver tex of G of maximum degree  t. By (3), 

t => (n + 1)/2. 

Case 1. ( n + l ) / 2 < - t < = n - 5  
If V has a neighbor  W of degree  s, then w ( V W )  = t + s, therefore  t + s => n, 

hence s > n - t => 5. If s = 5, then w ( V W )  = n and there fore  w(G)  = n and the 

proof  is completed.  Otherwise,  s = 6, s = t by the maximali ty of t, therefore  
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s < n - 5 and so each neighbor  of V contr ibutes  to the right side of (13) at least 

10(s - 6 ) ,  hence at least 10(n - t - 6 ) .  By (3), at least t - [t/2] of the neighbors of 

V have valences => (n + I)/2, and -< t - n - 5. These  neighbors cont r ibute  each 

at least 10((n + 1 ) / 2 - 6 )  to the right side of (13), while V itself contr ibutes  

1 0 ( t -  6). It follows that  

e * - 1 2 0 ( 1 - g ) +  l O ( t - 6 ) +  ( t - [ 2 ] ) 1 0  (n  2___~1_6)+ [2]  l O ( n - t - 6 )  

120 (1 -  g ) +  1 0 ( t - 6 ) +  (t/2)10 ( - n - ~ - 6 ) +  ( L _ ~ ) 1 0 ( n -  t - 6 )  __> 

= - 5t -~ + t(7.5n - 17.5) + 62.5 - 120g. 

The  last expression in t has a maximum when t = 0.75n - 1 . 7 5 ,  hence for a 

fixed g and a fixed n, the minimum value of the said expression where  t varies so 

that (n + 1)/2 =< t =< n - 6 occurs for  t = (n + 1)/2, hence we get that 

= 2.5(n z - 3 n  +21  - 48g). 

It follows that e*_-  > 1 if n 2 - 3 n  + 2 1 - 4 8 g  > 0 ,  i.e. if n is grea ter  than the 

largest of the two roots  of n 2 - 3 n + 2 1 - 4 8 g = 0 ,  hence if n >  

1�89 X / 4 8 g -  18.75, hence if n > 6 +  X/48g + 1, therefore  if n = n (g ) .  

Case  2. t = n - 4 

In this case the ver tex V contr ibutes  9 n - 9 5 ;  by (3), at least t - [ t / 2 ]  = 

n - 4 - ( n - 5 ) / 2 = ( n - 3 ) / 2  of the neighbors  of V have valences at least 

(n + 1)/2 and at most  t, hence they contr ibute  each at least 10((n + 1 ) / 2 -  6), and 

so (13) yields 

e * > - 1 2 0 ( 1 - g ) + 9 n - 9 5 + ( E ~ )  10 ( - ~ -  6) 

= 2.5n2 - 26n + 107.5 - 120g. 

It follows as in the previous case that e* _-> 1 if n > 5.2 + X/48g - 15.96, hence 

e*_->l if n = n ( g ) .  

Case 3. t = n - 3 

The  ver tex V contr ibutes  7�89 - 82�89 and t - [t/2] = (n - 3)/2 of the neighbors 

of V have valences at least (n + 1)/2 and at most  t, hence they cont r ibute  each at 

least 10((n + 1)/2 - 6), and so (13) yields 
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= 2.5n 2 - 27.5n + 120 - 120g. 

It follows that  e * _ -  > i if n > 5.5 + X / 4 8 g -  17.75, hence if n = n(g). 

Case 4. t >= n - 2 
The  ver tex  V cont r ibutes  at least 5 n - 6 5 ,  and by (3) it has at least 

t - [t/2] _-> n - 2 - (n - 3)/2 = (n - 1)/2 of its ne ighbors  contr ibut ing each at least 

5n - 6 5 ,  the re fore  by (13) it follows that  

e * > - 1 2 0 ( 1 - g ) + 5 n - 6 5 + ( ~ ) ( 5 n - 6 5 )  

= 2 . 5 n 2 -  30n +87 .5  - 120g; 

the re fo re  e*_ -  > 1 if n > 6 + ~ / 4 8 g  + 1, hence if n = n(g). 
T h e r e f o r e  if n = n(g) then e* _-> 1, implying that  w(G) = n, and the p roof  of 

T h e o r e m  1 is comple te .  

PROOF OF THEOREM 2. Let g --_> 2 be such that  48g + 1 is a comple te  square ,  

say 48g + 1 = (2m + 1 )  2 , and let G be a graph in Gg such that  w(G)=  n(g). 

Hence  n = 8 + (2m + 1 ) =  2m + 9 .  It follows f rom (4), (7) and (9), which are 

appl icable  to our  graph  G and the same  nota t ion  for  the weight n, that  

(14) 303= ~ e3,k<= ~ [ k ] v k ,  
k ->n-3 k _>n--3 

( 1 5 )  3v3+4v4  = ken-4E (ea,k+e4,k) <= k>'n-4E [ k ]  

(16) 303+404+505= E (e3,k + e4.k + e,,k ) <= k~n-5 

Ok 

It  follows as in gett ing (12) f rom (6), (8) and (10), that  

30V3+ 20V,+ 10V5-- -< 10 k--. ~ 3 [ k ]  v k + 5  [_n__~] v . _ , + 2  [ _ n @ ]  v._5, 

and by using (1) it follows that  

n 6 
120(g - 1) - 10 ~ (k - 6)vk + (9n - 105)v,_5 + (7.5n - 92.5)v.-4 + (5n - 75)v.-3 

k=7 

(17) 
+ (5n - 65)v.-z + (5n - 65)v,-1 + (5n - 55)v. + . . - .  
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By the proof  of T h e o r e m  1 it follows that  e* _-> 1, hence v,-3 + v, 4 + v, 5 --> 1. 

Suppose  v, 3 = 0. If v,-4 _-> 1, then a (n - 4)-valent ver tex  contr ibutes  7.5n - 92.5 

to the right side of (17), and it has by (3) at least n - 4 - [(n - 4)/2] = (n - 3)/2 

neighbors  of valences => (n + 1)/2, contr ibut ing each at least 5n - 6 5 ;  the re fore  

(17) implies 

120(g - 1) = 7.5n - 92.5 + @ (5n - 65). 

Since 48g + 1 = (2m + 1) z and n = 2m + 9 ,  easy computa t ions  show that  m _-< 

- 7/3, which is impossible .  T h e r e f o r e  the supposi t ion v,-3 = 0 leads to v, 4 = 0; 

hence v,_, _-> 1. In this case a (n - 5)-valent ver tex  contr ibutes  9n - 105 and by 

(3) it has (n - 5)/2 ne ighbors  of valences _-> (n + 1)/2, contr ibut ing each at least 

5n - 6 5 ;  therefore  by (17) it follows that  

120(g - 1) _-> 9n - 105 + @ (5n - 65), 

which leads to m = < - 7 ,  impossible .  The re fo re  it follows that  v, 3_- > 1, A 

(n - 3)-valent ver tex contr ibutes  5n - 75, and it has by (3) =_> (n - 3)/2 neighbors  

of valences _-> (n + 1)/2, contr ibut ing each at least 5n - 75; the re fore  

(18) 1 2 0 ( g - I ) = > ( 1  + ~ ' _  ( 5 n - 7 5 ) .  

In this case both  of the two sides of the inequali ty equal  l O ( m : + m - 1 2 ) ,  

hence equal i ty holds in (18); the re fore  

n - 3  n - 1  
V. 3 = 1 + ~ -  - - - - ' - ~  -- m + 4 ,  

and as no o ther  contr ibut ions  are possible in the right side of (17), it follows that  

v k = O f o r  all k, 7 _ - < k • n - 3 .  

It follows by (16) that  

5 v 5 _ - - < [ - ~ ]  v,, 3 = m 2 + 7 m + 1 2 ,  3 v 3 + 4 v ~ +  

and (1) implies that  

3v~+2v4+vs= 1 2 ( 1 -  g ) +  (n - 3 - 6 ) @ =  mZ+7m + 1 2 ;  

there fore  v4 = us = 0 and v3 = �89 2 + 7m + 12). In addit ion,  it follows f rom the 

equal i ty which was der ived f rom (16), as well as f rom the equal i ty that  holds for  
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the corresponding inequality (14), that every (n - 3)-valent vertex has half of its 

neighbors as 3-valent vertices, in alternating order around it; therefore it follows 

that G can have no 6-valent vertices, i.e., v~ = 0. By deleting all the 3-valent 

vertices from G we get a graph which triangulates S~, has m + 4 vertices which 

have valences = (n - 3)/2 = m + 3, hence it must be the complete graph Km+~ on 

m + 4  vertices. Such a triangulation of Sg is known, by the famous 

Heawood-Youngs-Ringe l  Color Map Theorem,  see [8]. 

This completes the proof of Theorem 2. 

PROOF OF THEOREM 3. Let G be in Gg such that w ( G )  = n (g), and suppose G 

has a vertex of valency => n + 2. This vertex contributes at least 5n - 45 and it 

has at least n + 2 - [(n + 2)/2] = �89 + 3) neighbors of valences -> �89 + 1), each 

of which contributes at least 5 n - 7 5 ;  therefore by (17) 

120(g - 1) _-> 5n - 45 + �89 + 3)(5n - 75), 

implying that n =< 5 + X/48g + 40. A quick check reveals that this contradicts the 

choice of n for all g => 1, hence C has no vertices of valences -> n + 2, and the 

proof is complete. 

Improving Theorem 3 for many values of g, we have the following 

THEOREM 4. There exists a set N, of integers, having density 1, such that if 

G E Gg, g C N1 and w ( G )  = n(g) ,  then the maximum degree of G is at most 

n - - 1 .  

THEOREM 5. There exists a set N2 of integers, having density �89 such that if 

G E Gg, g E N2 and w ( G )  = n(g) ,  then the maximum degree of G is at most 

n - 3 .  

PROOF OF THEOREM 4. If G E Gg and w ( G )  -- n (g), and if G has a vertex of 

valence => n, then by (17) it follows that 

n + l  
120(g - 1) _-> 5n - 55 + --~--- (5n - 75), 

implying that n-<_ 6 +  k/48g +25.  This means that there should be an (odd) 

integer in the segment (6 + X/48g + 1,6 + X/48g + 25], or equivalently, that there 

should be a complete square in the segment (48g + 1,48g + 25]. The set of values 

of g for which this holds has density zero, hence in its complement  N, it does not 

happen,  hence the maximum degree is then at most n -  1. 

PROOF OF THEOREM 5. In a similar way, if G E G~ is such that w (G)  = n(g)  

and G has a vertex of valence _-> n -  2, then by (17) it follows that 
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120(g - 1) => 5n - 65 + n--21 (5n - 75), 

implying that n =< 7 + X/48g + 12. This means that there should be an odd integer 

in the segment (6 + ~/48g + 1,7 + x/48g + 121; these segments, for large values 

of g, have length decreasing to 1 and they contain an odd integer with probability 

{, hence if N2 is defined as the set of those integers g for which the segments 

(6 + X/48g + 1,7 + X/48g + 12] contain no odd integers, then the said graph G 

has maximum valence which is at most n -  3, and the density of N_, is ~. 
Using the same method as in the proof of Theorem 3, we get the following 

result, in which the maximum valence V and the weight w of a graph in G~, are 

related: 

THEOREM 6. If G is a graph in Gg,g ~ 2  and w ( G ) =  w >-16, and if V 

denotes the maximum valence of the vertices of G, then the following inequalities 

hold, depending on the parity of w and V: 

V even V odd 

w even V < ' ~ 4 2 g - 1  V ~ 2 4 ~ - 1  
=~ w - 1 2  w - 1 2  

w odd V=<24 w2~-1-13 V=<24 -13  - 1  

The proof of Theorem 6 requires the development of the analogue of (17) for 

even values of weights; therefore we omit the proof. 

Concerning multigraphs and pseudographs on Sg, we have the following 

THEOREM 7. For every g,g >= l, w (MGg)=8g  + 7; for every g,g >=2, there 

exists a unique member H of MGg such that w(H)  = 8g + 7. 

THEOREM 8. For every g ,g=>l ,  w ( P Q ) =  2 4 g - 9 ;  for every g,g >=2, there 

exists a unique member P of PGg such that w (P) = 24g - 9. 

PROOF OF THEOREM 7. Suppose a multigraph G in MGg, g >- 1, is such that 

w(G)>= 8g + 7; as (2) holds for G ((3) might not be true for a multigraph), it 

follows that (13) holds with n = 8g + 7. 

It is sufficient to show that G has at least three vertices of valences 

_-> (n + 1)/2, since then they contribute each 5n - 65 = 40g - 30 to the right side 

of (13), implying that e* => 120(1 - g) + 3(40g - 30) = 30, hence w (G)  = 8g + 7. 

A face of G has three different vertices, by the definition of MGg ; if all the 

three vertices of some face have valences _->(n + 1)/2, then e*_->30 and 
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w(G)  = 8g + 7. Otherwise, every triangle of G has just two vertices of valences 

(n + 1)/2, and G has only two such vertices; if we denote by X and Y the two 

vertices of G of valences x and y, respectively, where x, y => (n + 1)/2, and if 

Z , . .  -, Zp are the other vertices of G, of valences z , , .  �9 -, zp, respectively, where 

z, =<�89 - I) for all i, 1 = i -<_p, all the triangles of G are of the form XYZ, .  It 

follows that the vertices neighboring X are, in cyclic order, Y, Z,.1, Y, Z,.2, �9 �9 ", Y;  

around the vertex Y they appear  in the following cyclic order: 

X, Zj.I, X, Z,._~,-.., X, while around any of the Z, vertices the neighbors are: 

X, Y, X, Y,. �9 X. It follows that all z, are even and z, >= 4, and counting all the 

edges of the form XZ, yields x/2 = E, (z,/2), while counting all the edges of the 

form YZ, leads to the equality y/2 = Z, (z,/2), therefore x = y  = Z,z,. 

By (1) it follows that 0 = 1 2 ( 1 - g ) + 2 ( x - 6 ) + Z , ~ ( z , - 6 ) ,  hence 

0 = 1 2 -  12g + 2 x  - 12+ ~ z, - 6 p  = - 12g + 2 x  + x - 6 p ,  

implying that x = 4g + 2p. 

As x = Z,__>~ z,, it follows that min, z, <= x/p, since x/p  is the average value of 

the z,. It follows that 

x + min z, <= 4g + 2p + x/p  = (4g + 2p)(1 + I /p) ;  
i 

since z, => 4 for all i, it follows that 4g + 2p = x = Z,_-_~ z, -_> 4p, hence 4g => 2p, or 

p =< 2g. Therefore  

w ( G )  = x + min z, =< (4g + 2p)(1 + 1/p) 
1 

<- max{(4g + 2p)(1 + 1/p) I 1 <= p <-<_ 2g} = 8g + 4 

(as can be easily obtained by calculus, where the maximum is obtained for 

p = 1). This contradicts the assumption on G that w(G)>= 8g +7.  

It follows that some face of G has all of its three vertices of valence (n + 1)/2, 

and therefore w ( G )  = 8g +7 .  

Suppose that for some multigraph H in MG~, g >= 2, w ( H ) =  8g +7.  By the 

previous part  of the proof it was shown that H has at least three vertices of 

valence => (n + 1)/2, and using (17) we get 

120(g - 1) => 3(5n - 75) = 3(5(8g + 7) - 75) = 120g - 120, 

therefore equality holds and hence there are no other contributions in the right 

side of (17), implying that vk = 0 for all k, 7 =< k ~  n -  3. 
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If g = 1, then n = 15 and 5n - 75 = 0, hence the only conclusion for v, 3 = v~2 

is that v~2 = 3; for examples of multigraphs in MG~ for which w = 15, see [4]. 

Suppose that g ~ 2, 5(8g + 7 ) - 7 5  > 0, hence it follows that v,-3 = 3, and 

vk = 0  for all k, 7 < ~ k ~ n - 3 .  

By (I)  it follows that 3v3 + 2v4 + v5 = 12(I - g) + 3(n - 3 - 6) = 12g + 6; by (16) 

it follows that 

3v~ + 4v4 + 5v' <= 3 [ - ~ ]  = 3(8g~ + 7 -  g) =12g + " 2 

hence it follows that v4 = v5 = 0. Therefore  v3 = 4g + 2, and v8g+~ = 3; no 6-valent 

vertex is a neighbor of a 3-valent vertex, and all three neighbors of a 3-valent 

vertex must be different, therefore every 3-valent vertex is a neighbor to each 

one of the three (8g +4)-valent  vertices. It follows that the 3-valent vertices 

appear  cyclically in an alternating fashion around every (8g + 4)-valent vertex; 

therefore H contains no 6-valent vertices. 

To construct this unique H, let H~ b e t h e  tessellation of the torus shown in Fig. 

1; H~ has three vertices of valence 6. To get H~, assume Fig ~ has been 

V 

�9 - v 

I t  

Fig. 1. 

A v  

v 

constructed as an element of MGg_t having just three vertices, which have 

valence 4(g - 1) + 2; Fig is obtained from Hs ~ and H~ by deleting one triangular 

face from each, and identify the boundaries properly along the three edges. Fig is 

a member  of MGg and it has just three vertices which have valency 4g + 2. The 

multigraph H is obtained from Hg by splitting each triangular face of Fig into 

three triangles meeting at a 3-valent vertex (the corresponding Kleetope over  

H~). The three (4g + 2)-valent vertices of H~ are converted into three (8g + 4)- 

valent vertices in H, and the weights of the edges of H are either 8g + 7, or 

16g + 8, hence w (H)  = 8g + 7. 
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It  follows that  for  every  g, g >-_ 1, w (MGg) = 8g + 7, and that  there exists a 

unique mul t igraph  H in MGg, for  all g_->2, such that  w(H)=8g+7; this 

comple tes  the p roof  of T h e o r e m  7. 

PROOF OF THEOREM 8. Suppose  P is a p seudograph  in PG~, g => 1, such that  

w(P) >= 24g - 9; as (2) holds for  P, it follows that  (13) holds, with n = 24g - 9. 

Clear ly  P has at least one ver tex  of valence => (n + 1)/2, which contr ibutes  at 

least 5 n -  65 to the right side of (13), the re fore  

e * = 120(1 - g)  + 5n - 65 = 120(1 - g)  + 5(24g - 9) - 65 = 10, 

therefore  e* => 10, and hence w(P) = 24g - 9 .  

S u p p o s e / 5  is in PGg, for  g _--> 2, such that  w (/5) = 24g - 9. (17) holds fo r /5  and 

since /5 has at least one ver tex  of valence => (n + 1)/2, it follows that  

120(g - 1) => 5n - 75 = 5(24g - 9) - 75 = 120(g - 1), 

therefore  equal i ty  holds and v . - s =  v24g-~2 = 1 and vk = 0  for  all k, 7_-  < 

k ~ 24g - 12. 

By (1) it follows that  3v3 + 2v4 + v5 = 12(1 - g)  + 24g - 12 - 6 = 12g - 6; by 

(16) it follows that  

3 v 3 + 4 v 4 + 5 v s _ - < [ ~ ]  = 2 4 ~ - 1 2  2 = 12g - 6, 

hence it follows that  v4 = v5 = 0, and that  v3 = 4g - 2. A 6-valent  ver tex  is not  a 

ne ighbor  of any 3-valent  ver tex,  and it follows as in the p roof  of  the previous  

t h e o r e m  that  v6 = 0. 

T o  construct  the unique P in PG~, g -> 2, for  which w (P)  = 24g - 9, s tart  with 

2 g -  1 loops on the sphere ,  as shown in Fig. 2, where  all the loops have  a 

c o m m o n  ver tex  V and they de te rmine  2g regions,  of which 2(g - 1) are digons 

and the o the r  two are monogons .  Rep lace  the interiors  of a pair  of nonad jacen t  

digons by the handle ,  shown in Fig 3, and where  the four  ver t ices  V', 1 _-< i <= 4, in 

the handle  are identified with the ver tex  V on the sphere ;  this ope ra t ion  is 

p e r f o r m e d  g - 1  t imes using all of the digons. One  addi t ional  ope ra t ion  is 

required,  in which the interiors  of the m o n o g o n s  are dele ted  and a handle  is 

inserted,  as shown in Fig. 4, where  the two vert ices V 1 and V 2 are identified with 

the ver tex  V on the sphere .  T h e  result  is a p seudograph  on Sg, g _- 2, having just 

one ver tex,  of va lence  2(2g - 1) + 8(g - 1) + 4 = 12g - 6. The  K lee tope  over  it is 

a p s e u d o g r a p h  in Sg in which 3-valent  vert ices are ne ighbors  to the only o the r  

ver tex  of valence 2 ( 1 2 g -  6 ) =  2 4 g -  12, the re fo re  its weight  equals  2 4 g -  9. 
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Fig. 3. 

Fig. 2. 

W 1 

V 2 

Fig. 4. 

This completes the proof of Theorem 8. 

As a corollary to the proof of Theorem 1, we have 

COROLLARY 1. If a multigraph or a pseudograph in M Q  U PGg, g >= 1, is 

such that a vertex of maximum degree t has t different neighbors, then w(G)<- 
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PROOV. By use of (3); we omit the obvious details. 

For large graphs we have the following 

THEOREM 9. I f  {G'}~=~ is a sequence of pseudographs such that V(Gm)--~oo 

as m --~ ~, and where for a fixed go, G ~n is in PGg(m~ with g(m ) <= go for all m, then 

there exists an M such that w(G")<= 15 holds for all m, m ~ M. 

PROOF OF THEOREM 9. It is clearly sufficient to prove the assertion for 

sequences {G"}~,=, satisfying, in addition, the condition w ( G ~ )  >- _ 15 (take the 

subsequence, obtained by deleting all G "~ for which w (G " )  _-< 14). Applying (13) 

with n = 15 for all G" ,  we observe that all the coefficients of v k ( G " )  are 

positive. 

Let {Gm'}m,_~l be the subcollection (finite or infinite) of {Gm}7,-~ of all those 

graphs Gm' for which the expression of the right side of (13) is negative or zero, 

i.e., for which 

IO 

10 ~ (k - 6)vk (G" ' )  + 50v . (G" ' )  + 30v~2(G"') + 10v,3(G m) + 10v,,(G m,) + . . .  
k = 7  

_-__ 120(g(m' ) -  1)_- < 120(go- 1). 

It follows that for some L1 and L2, vk (Gm') --< L1 holds for all k, 7 =< k _-< L2 and 

vk (G'~') = 0 for all k, k > L2. 
By (1) it follows that v3(G~'), o 4 ( a  m') and vs(G '~') are bounded as well, i.e., 

there exist constants L3 and L4 such that vk (Gm.) __< L3 holds for all k, 3 _-< k <_- L~ 

and k ~ 6 ,  and vk(Gm')=0 for all k, k >L4.  
If the collection {Gm'} is infinite, then since V(Gm)---~oo as m---~ oo, it follows 

that, in addition, o6(G'~') -'-~ ~176 as m'-----~ oo; therefore if m'  is big enough, G m' must 

have 6-valent vertices neighboring 6-valent vertices, i.e., e6,6(G '~') ~ 1, implying 

that w(G m') =< 12, in contradiction to the assumption on Gm'. 

It follows therefore that the collection of Gm' is finite, hence for some M, 

m ' <  M for all m';  equivalently, e * ( G m ) ~  1 for all m, m > M, i.e. w(G'~) <- _ 15 

holds for all m, m ~ M. 

This completes the proof of Theorem 9. 

THEOREM 10. For every g, g >= O, there exists a constant C = C (g ) such that if 

a pseudograph G is in PGg and V ( G ) ~  C, then w(G)<= 15. 

PROOF OF THEOREM 10. The assertion is clearly true for g - - 0 ,1 .  If the 

assertion is false for some g, g _->2, then there exists a sequence {G'}~,=, of 
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graphs in Gg such that V(Gm) ---, ~ as m --~ ~, and where w ( G  m) > 15 for all m ; 

this contradicts Theorem 9. 

In a similar way we prove the following 

THEOREM 11. For every integer g, g >= O, and for every constant C there exists a 

constant C* = C*(g, C), such that if a pseudograph G is in PGg and V ( G )  >- C*, 

then 

(i) w(G)<= 14, if in addition v , : (G)=  < C; 

(ii) w(G)<= 13, if in addition v, ,(G) & V,a(G)_- < C; 

(iii) w(G)<= 12, if in addition rio(G), v , , (G) & v~ffG) <- _ C. 

The proof of Theorem 11 is omitted, being very similar to the proofs of the 

previous theorems; merely observe that the coefficients of vk in (13), or in its 

analogue for even weights, which are either negative or zero, do multiply 

bounded values of vk - s .  

REMARK. Our bounds in Theorem 1 agree with the conjectured bound of 

13+2g for all g, 0=<g_-<6, and are smaller than 13+2g  for all g, g_->7; all the 

bounds in Theorems 1, 5 and 6, for g = 1, are equal to 15. 

Let G*,  G** and G*** be defined by 

G* = {G ] G E Q and V3(G) = 0}, 

G]* = {G ] G E Q and V3(G) = V4(G) = 0}, 

G*** = {G ] G EGg and V3(G) = V4(G) = Vs(G) = 0}. 

Kotzig [6] proved that w ( G * ) =  w(G**)= 11, and Griinbaum and Shephard 

[4] proved that w ( G * ) =  w(G**)= 12. We have the following 

THEOREM 12. For every g, g>--_l, w ( G * * * ) < - n ( g ) - 3 ;  for every g, g>-2, 

making 48g + 1 a complete square, there exists a unique graph G in G*** such 

that w(G)  = n ( g ) - 3 .  

THEOREM 13. For every g, g >= 2, w (G *) is at most the least odd integer greater 

than 5.5 + ~/48g - 17.75. 

THEOREM 14. For every g, g >- 2, w ( G * * ) is at most the minimum of the least 

odd integer greater than 6 + ~ / 4 8 g -  19 and the least even integer greater than 

6.2 + ~/48g + 4.84. 

PROOF OF THEOREM 12. If G E G***, then by (1), 12(g - 1) = Ek~7(k -6)vk 

and the bound on the weight of G follows easily from (3). 
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If for g - 2 ,  4 8 g + l = ( 2 m + l )  2 and G in G * * *  is such that w ( G ) =  

n ( g ) -  3 = n - 3, t h e n  n - 3 = (8 + 2 m  + l ) -  3 = 2 m  + 6 and 12g -- m :  + m.  B y  

(3), G has at least one vertex of valence ~ (n - 3)/2 = m + 3, and at least m + 3 

of its neighbors are of valence => m + 3 ;  thus G has at least m + 4  vertices of 

valences => m + 3. Therefore  

12(g - 1) => (m + 4)(m + 3 - 6) = (m + 4)(m - 3) = m 2 + m - 12 = 12g - 12, 

since m 2 +  m = 12g; thus equality holds, implying that vk = 0 for all k, 7 <- 

k r  + 3. No neighbor of a (m + 3)-valent vertex is 6-valent, because of the 

restriction on the weight of G, therefore v6 = 0. It follows that G must be the 

complete graph K,,+4 on m + 4  vertices, known to triangulate Sg by the 

Heawood-Youngs-Ringe i  map coloring theorem. This completes the proof of 

Theorem 12. 

The proofs of Theorems 13 and 14 are omitted, since they are the straight 

analogues of the proof of Theorem 1, in which the corresponding inequalities are 

obtained for both odd and even weights (in the case of Theorem 14). 
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